Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 308: 107214, 2024 May.
Article in English | MEDLINE | ID: mdl-38428228

ABSTRACT

In the recent past, there has been an ever-increasing interest in the search for metal-based therapeutic drug candidates for protein misfolding disorders (PMDs) particularly neurodegenerative disorders such as Alzheimer's, Parkinson's, Prion's diseases, and amyotrophic lateral sclerosis. Also, different amyloidogenic variants of human lysozyme (HL) are involved in hereditary systemic amyloidosis. Metallo-therapeutic agents are extensively studied as antitumor agents, however, they are relatively unexplored for the treatment of non-neuropathic amyloidoses. In this work, inhibition potential of a novel ionic cobalt(II) therapeutic agent (CoTA) of the formulation [Co(phen)(H2O)4]+[glycinate]- is evaluated against HL fibrillation. Various biophysical techniques viz., dye-binding assays, dynamic light scattering (DLS), differential scanning calorimetry (DSC), electron microscopy, and molecular docking experiments validate the proposed mechanism of inhibition of HL fibrillation by CoTA. The experimental corroborative results of these studies reveal that CoTA can suppress and slow down HL fibrillation at physiological temperature and pH. DLS and 1-anilino-8-naphthalenesulfonate (ANS) assay show that reduced fibrillation in the presence of CoTA is marked by a significant decrease in the size and hydrophobicity of the aggregates. Fluorescence quenching and molecular docking results demonstrate that CoTA binds moderately to the aggregation-prone region of HL (Kb = 6.6 × 104 M-1), thereby, inhibiting HL fibrillation. In addition, far-UV CD and DSC show that binding of CoTA to HL does not cause any change in the stability of HL. More importantly, CoTA attenuates membrane damaging effects of HL aggregates against RBCs. This study identifies inorganic metal complexes as a therapeutic intervention for systemic amyloidosis.


Subject(s)
Amyloid , Amyloidosis , Humans , Amyloid/chemistry , Muramidase/chemistry , Molecular Docking Simulation , Amyloidosis/drug therapy , Amyloidosis/metabolism , Dynamic Light Scattering , Protein Aggregates
2.
Int J Biol Macromol ; 242(Pt 1): 124760, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37156314

ABSTRACT

Diabetic neuropathy encompasses multiple pathological disturbances, many of which coincide with the pathophysiological mechanisms of neurodegenerative disorders. In the present study, various biophysical techniques like Rayleigh light scattering assay, Thioflavin T assay, far-UV Circular Dichroism spectroscopy, Transmission electron microscopy have unveiled the anti-fibrillatory effect of esculin upon human insulin fibrillation. MTT cytotoxicity assay demonstrated the biocompatibility of esculin and in-vivo studies such as behavioral tests like hot plate test, tail immersion test, acetone drop test, plantar test were performed for validating diabetic neuropathy. Assessment of levels of serum biochemical parameters, oxidative stress parameters, pro-inflammatory cytokines as well as neuron specific markers was done in the current study. Rat brains were subjected to histopathology and their sciatic nerves were subjected to transmission electron microscopy to analyze myelin structure alterations. All these results reveal that esculin ameliorates diabetic neuropathy in experimental diabetic rats. Conclusively, our study demonstrates the anti-amyloidogenic potential of esculin in the form of inhibition of human insulin fibrillation, making it a promising candidate in combating neurodegenerative disorders in the near future and the results of various behavioral, biochemical, and molecular studies reveal that esculin possesses anti-lipidemic, anti-inflammatory, anti-oxidative and neuroprotective properties which help in ameliorating diabetic neuropathy in streptozotocin induced diabetic Wistar rats.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Rats , Animals , Rats, Wistar , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Insulin/pharmacology , Esculin/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Streptozocin/pharmacology
3.
Biochimie ; 211: 110-121, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36958592

ABSTRACT

Protein aggregation is an underlying cause of many neurodegenerative diseases. Also, the overlapping pathological disturbances between neurodegenerative diseases and type-2 diabetes mellitus have urged the scientific community to explore potential of already available anti-diabetic medications in impeding amyloid formation too. Recent study brief out promising potential of an anti-diabetic drug Glyburide(GLY) as an inhibitor of amyloid fibrillation utilizing several biophysical techniques, computational methods and imaging tools. The mechanism of interaction was elucidated and the structural alterations in human serum albumin(HSA) as well as the microenvironment changes of its fluorophores(tryptophan, tyrosine) upon interacting with GLY were studied by spectroscopic techniques like Circular dichroism and synchronous fluorescence. Binding studies detailing about the GLY-HSA complex distance and the energy transfer efficiency was obtained by Fluorescence resonance energy transfer. For aggregation inhibition studies, the existence and size of aggregates formed in HSA and their inhibition by GLY was determined by Turbidity assay, Dynamic light scattering and Rayleigh light scattering along with dye binding assays. The ThT kinetics measurements analysis suggested that GLY deaccelerates fibrillation by decrement of apparent rate(Kapp) constant. The inhibitory effect of GLY might be attributed to native structure stabilization of HSA by obstruction into ß-sheet conversion as confirmed by CD spectroscopy results. Amyloid inhibition and suppression of amyloid-induced hemolysis by GLY was further delineated by TEM and SEM analysis respectively. All these findings for the first time report the new facet of the anti-amyloidogenic potential of GLY, making it a promising candidate to treat neurodegenerative diseases too in the near future.


Subject(s)
Amyloid , Glyburide , Humans , Glyburide/pharmacology , Amyloid/chemistry , Amyloidogenic Proteins , Serum Albumin, Human/chemistry , Protein Aggregates , Circular Dichroism
4.
Life (Basel) ; 12(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36556476

ABSTRACT

The application of traditional medicines for the treatment of diseases, including diabetic neuropathy (DN), has received great attention. The aim of this study was to investigate the ameliorative potential of naringin, a flavanone, to treat streptozotocin-induced DN in rat models. After the successful induction of diabetes, DN complications were measured by various behavioral tests after 4 weeks of post-induction of diabetes with or without treatment with naringin. Serum biochemical assays such as fasting blood glucose, HbA1c%, insulin, lipid profile, and oxidative stress parameters were determined. Proinflammatory cytokines such as TNF-α and IL-6, and neuron-specific markers such as BDNF and NGF, were also assessed. In addition, pancreatic and brain tissues were subjected to histopathology to analyze structural alterations. The diabetic rats exhibited increased paw withdrawal frequencies for the acetone drop test and decreased frequencies for the plantar test, hot plate test, and tail flick test. The diabetic rats also showed an altered level of proinflammatory cytokines and oxidative stress parameters, as well as altered levels of proinflammatory cytokines and oxidative stress parameters. Naringin treatment significantly improved these parameters and helped in restoring the normal architecture of the brain and pancreatic tissues. The findings show that naringin's neuroprotective properties may be linked to its ability to suppress the overactivation of inflammatory molecules and mediators of oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...